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A matched-asymptotic analysis has been carried out for an axisymmetric convection 
cell in the case of stress-free boundaries. This problem differs from that of two- 
dimensional convection rolls mainly through the special role played by the central 
plume. The radius, of order E ,  of the latter depends on the Rayleigh number R 
through the relationship c4( - In E )  = R-g. The plume velocity is independent of height 
a t  lowest order and its magnitude exceeds by a factor ( -In E) ;  the strength, of order 
&, of the core flow. As a result of these properties the central plume is governed by 
advection, in contrast to the perimeter plume which is affected by conduction as well. 
This asymmetry is reflected in the different thickness of the horizontal thermal 
boundary layers and gives rise to the deviation of the core temperature from the 
mean value of the top and bottom temperatures. This deviation is positive (negative) 
for the case of a falling (rising) central plume. While the core flow is driven mainly 
by the perimeter plume the fraction of the heat flux carried by the central plume is 
always above three-quarters and increases as the radius-to-height-ratio h decreases. 

1. Introduction 
Convection in a layer heated from below has long been studied as a particularly 

revealing example of nonlinear fluid mechanics. The numerous applications in 
geophysical and engineering problems have contributed to the interest in high- 
Rayleigh-number convection, where the heat transport by fluid motion by far 
exceeds that carried by molecular conduction. Among the theories on high-Rayleigh- 
number convection, those based on asymptotic boundary-layer methods have played 
a special role even though the assumptions on which they rely are not always realized 
in experimentally or geophysically observed systems. In spite of the restricting 
assumptions the stationary boundary-layer models appear to capture the main 
physical features governing high-Rayleigh-number convection. There is thus a 
continuing interest in asymptotic models particularly as the Rayleigh numbers 
accessible to numerical simulations of convection flows have grown dramatically in 
the past decade. 

Asymptotic analysis and numerical computations complement each other in that 
the former have elucidated the spatial scales and nonlinear mechanisms seen in the 
numerical results. The computations, on the other hand, can simulate the time- 
dependent processes that cannot easily be treated by asymptotic methods. Most of 
the attention in this area of research has been focused on two-dimensional convection 
because of the additional complexity of the third dimension. Boundary-layer models 
of two-dimensional convection in a high-Prandtl-number fluid have been published 
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by Turcotte & Oxburgh (1967), Robinson (1967), Roberts (1979), Olson & Corcos 
(1980) and others. By refining the boundary-layer analysis and associated numerical 
calculations the accuracy of the approximations for the exact asymptotic solution 
has been improved and reliable results have been obtained in the case of stress-free 
boundaries. In  the present paper the analysis is extended to the case of an 
axisymmetric convection cell. 

Axisymmetric convection is generally regarded, as a prototype of the cellular 
convection cells typically observed in nature and in many experiments. It exhibits 
the characteristic asymmetry between rising and descending flow found in hexagonal 
convection cells and it is also closely related to the axisymmetric quadrupolar 
convection pattern that is found in theories of convection on the Earth's mantle 
(Busse 1983 ; Machetel & Rabinowicz 1985 ; Machetel & Yuen 1988). Because of the 
asymmetry two different solutions exist, corresponding to the two signs of motion in 
the centre. As long as the boundary conditions and the material properties satisfy 
certain symmetry properties with respect to the midplane of the convection cell, both 
solutions transport the same amount of heat and do not differ in their integral 
properties. They can actually be transformed into each other by a reflection a t  the 
midplane. When material properties such as the viscosity are temperature dependent, 
one of the two solutions will be preferred in general. In  this paper, however, only the 
symmetric case will be considered. 

Characteristic of axisymmetric convection is the flow feature of a central plume, 
which will be analysed in $3  after the mathematical formulation of the problem has 
been given in $2. Sections 4 and 5 treat the analysis of the other thermal boundary 
layers which, together with the matching condition at the corners, leads to the 
complete system of equations. Discussion of the results is given in $6. 

2. Mathematical formulation of the problem 
We consider a pill-box shaped convection cell of height d and radius Ad with 

constant temperatures prescribed at top and bottom (see figure 1). All boundaries are 
assumed stress-free and the cylindrical sidewall is assumed to have a much lower 
conductivity than the convecting fluid. Using d as a lengthscale, K / d  as a scale of the 
velocity where K is the thermal diffusivity, and the applied temperature difference 
AT as a scale of temperature we obtain the following dimensionless equations for the 
velocity vector V and the excess 0 of the temperature over the mean value between 
the upper and lower boundaries : 

v -  v =  0, ( 2 . 1 4  

V2V-Vp+RSiz = 0 ,  (2.lb) 

v.vo = vze, (2.1 c )  

where i, is the vertical unit vector and R is the Rayleigh number R = ygATd3/~v in 
the familiar definition. Since we are only interested in steady solutions of the 
problem, the time derivatives have been neglected in (2.1). We have also assumed the 
limit of infinite Prandtl number, when the kinematic viscosity v far exceeds 
the thermal diffusivity, such that the momentum advection terms can always be 
neglected. 

For the description of the solution we shall use a system of cylindrical coordinates 
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6' = ++ O(R-i) 

FIGURE 1. Configuration of the problem. The isothermal region which occupies most of the cell 
interior is surrounded by the central plume A'-"', top thermal boundary layer A-B, perimeter 
plume B-C and bottom thermal boundary layer GA connected a t  the corners A ,  A", B and C. 

( r ,  2). Restricting attention to the axisymmetric case we introduce the stream 
function $, 

(2.2) 

The boundary condition can now be expressed in the form 

aw a8 
ar ar 

$ = - = - = 0  a t  r = O , A ,  ( 2 . 3 ~ )  

Taking the curl of (2 . lb)  we obtain 

The steady solution in the asymptotic limit of large R of (2.1) is characterized by a 
rising (or descending) plume at r = 0 and a descending (or rising) cylindrical sheet at 
r = A. In  addition there are thermal boundary layers a t  z = 0 , l .  The ring-like core 
enclosed by these structures is isothermal and obeys (2.4) with vanishing aelar. We 
thus obtain as a solution 

m 

$ = C sin (nnz) [A,F,(r, A )  + B ,  Gn(r ,  A ) ] !  
n=1 
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where the functions 

(2.6a) 

(2.66) 

have been introduced which satisfy the conditions 4 = 0 a t  r = 0,A. I,,K, are 
modified Bessel functions. The z-dependence of 4 has been chosen such that the 
boundary conditions for the velocity field a t  z = 0 , l  are satisfied. The coefficients A,, 
B, must be determined in such a way that the viscous stresses exerted by the interior 
flow a t  the boundaries r + 0 and r + A are balanced by the buoyancy forces of rising 
hot or the falling cold fluid a t  those places. For mathematical convenience we shall 
adopt the case of a rising plume a t  r = 0. Because of the symmetry of the problem, 
the solution can easily be transformed to  the case of a descending plume. 

Similar arguments as used in the two-dimensional problem are available for 
estimating the orders of magnitude of characteristic quantities. Since the aspect ratio 
A is assumed to take a value of 0(1), the longitudinal velocities in the horizontal 
boundary layers and the perimeter plume have the same order of magnitude as the 
core flow velocity, f say, and the thicknesses of these layers assume the same order 
of magnitude, 6. The balance between heat conduction and convection there yields 
the relation f - tF2. I n  addition we have the relation f N RS, which shows that the 
buoyancy force acting in the perimeter plume balances with the shearing force from 
the core flow. From these two relations we find that f - ~ and S - R-i, the same 
dependences on R as in two-dimensional convection, as previously pointed out by 
Jones, Moore & Weiss (1976). Nothing more definitive, however, can be said a priori 
about the orders of magnitude of the central plume velocity, r, and its radius, E ,  

except for the relationship - Rie-2 

which follows from the fact that the mass flux passing any cross-section of the central 
plume, xs2W, is of the same order of magnitude as the corresponding quantity of the 
perimeter plume, 2nA8f. We note that the order of magnitude of the isothermal core 
flow stream function (2.5), and thereby the coefficients A, and B,, are a t  most of 
O(Rf). 

The effectiveness of convection is measured by the Nusselt number 

ae 
h2 0 az 

NU = -- p - ( r ,  I )  r dr  = - $ [ ( r ,  0) r dr, 

which has a one-third power dependence on R as is easily proven from the above 
arguments. 

The following analysis proceeds by focusing attention first on the vertical thermal 
layers. The solutions for the two-dimensional case (Roberts 1979; Olson & Corcos 
1980) can be used as a guide, but the plume at r = 0 requires special consideration. 
As a consequence of the loss of symmetry between rising and descending motion the 
interior temprature differs from zero and enters the analysis as an additional 
parameter. Similarly, the heat transport carried by the rising plume differs 
significantly from that of the descending sheet. Both effects depend on the aspect 
ratio A of the convection cell. 

The horizontal boundary layers are more closely related to those of the two- 
dimensional problem and the main difference arises from the divergence of the 
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horizontal component of the velocity and from the different matching considerations 
with the centre plume. 

3. Analysis of the central plume 
The asymptotic solution in the neighbourhood of r = 0 is characterized by strong 

variations in the r-direction except near the boundaries z = 0 , l .  This can be seen 
easily if we introduce the stretched variables r* = r/E and u* = u/E and rewrite (2.1) 
in terms of them. In particular, the z-component of (2.lb) reduces to 

a t  the lowest order of E ,  where 8, denotes the temperature in the isothermal core 
region. By integrating once we find 

( 3 . 2 ~ )  

and by integrating twice we obtain 

w = W(z)  -E'R[ [ (8 -8 , )  r; dr; lnr, - (8-8,) r; In r; dr; 

where W(z)  denotes the vertical velocity along the axis r = 0. 
Solution (3.2) must be matched with the interior solution (2.5) in the overlapping 

region between the central plume and the isothermal core as E tends to zero. From 
(2.5) expressed in terms of the stretched coordinate r* we obtain, at the lowest order 
of E .  aw a l a $  W 

r-=r---=-2 C A,sin(nxz), 
ar ar r ar n-1 

l a $  w 

r ar n-l 
w = - - = 2  C An(-lne)sin(nxz). 

(3.3a) 

(3.3b) 

The matching between ( 3 . 2 ~ )  and (3.3a) requires that the coefficient A, is a quantity 
of O(e2R). Since the second term on the right-hand side of (3.2b) is of 0(s2R), (3.3b) 
should be matched with the first term on the right-hand side of (3.2b). That is, w in 
(3.2b) is approximated by W(z)  across the plume. Therefore, we find from the 
continuity of the heat flux 

where y is the fraction of the heat flux which passes through the central plume. 
Substitution of (3.3) into (3.4) leads to 

-(-In€) 2 C A,sin(nxz) = yxh2Nu, 
2x R [ ny1 7 (3.5) 

which determines A, as 
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W = (byA2( -In e) RNu);. (3 .7 )  

e( -In - ~ - t  (3 .8 )  

Combining ( 3 . 7 )  with (2 .7 )  we obtain an estimate for the order of magnitude of the 
plume radius, e :  

which shows that the radius of the central plume is much greater than the thermal 
boundary-layer thickness. As a result, conduction of heat in the radial direction is 
small in comparison with the advection of heat in the vertical direction. The plume 
is thus purely convective and the temperature profile at the beginning of the central 
plume is advected to its end invariantly. Besides the peculiar flow property embodied 
in ( 3 . 7 )  this is another distinctive property of the central plume. 

The above state is valid over almost the entire length of the plume, but the 
situation will be different a t  both ends. In  the remainder of this section we shall 
analyse the corner flow realized at both ends of the central plume and then examine 
the connection between the central plume and the horizontal thermal boundary 
layers. 

Substituting (3.6) into (2.5) we consider the asymptotic form of the first term on 
the right-hand side as z tends to zero (or unity). The infinite sum can be transformed 
into an integral form and we obtain the expression 

~ = ( ~ A ~ R N U ~  -p2 1 sin2 + J: sin ( s  cos +)K,(s sin +) ds 
2(-Ine) TC S 

= --( 1 yh2RNu )p2sinz@ln Y (tan;$), 2 2(-lne) 

where p denotes the radial distance from the origin and 
the x-axis. In  terms of the cylindrical coordinates, (3.9) 

z = rsinh[ -2 (  2(-Ine) )-] F +  

yh2RNu r2  

(3.9) 

$ the angle measured from 
is rewritten as 

(3.10) 

Streamlines calculated from the above equation are depicted in figure 2 .  The vertical 
velocity diverges logarithmically around the centre axis, so that  it can match the 
central plume flow. The range in which the vertical velocity takes values greater than 
O(Ri( - In e);) is restricted within a conical region with an angle of O(e). Outside, 
the vertical velocity decreases to zero to satisfy the boundary condition at the 
bottom (top) surface. Near r = 0 the horizontal surface velocity takes a value of 
O(RS/( -In E ) ; ) .  Although (3.9) provides a monotonically decreasing surface velocity 
distribution in r ,  the actual surface velocity increases with r gradually from the 
above limiting value since the flow component with B, neglected in the derivation of 
(3.9) becomes significant as r increases. 

Equation (3.9) with I,+ of O(R4) can be used to determine the size of the corner 
region. Assuming a pill-box-shaped region, we estimate its height and radius to be of 
O(-elne) and O(e), respectively. With such scales we may evaluate the orders of 
magnitude of both sides in (2.1 b,  c) to show that the buoyancy force is of the same 
order as the viscous force but that the convection term is greater than the conduction 
term by a factor of O(Rk). Therefore, in most of the corner region the flow turns 
around the corner without variations of the temperature along each streamline. 
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0 Radial distance 

FIGURE 2. Corner flow at both ends of central plume. 

There is, of course, a sublayer a t  the surface where heat conduction becomes 
significant . 

At the corner A of figure 1 where fluid having travelled along the bottom surface 
approaches and changes its flow direction, the fluid near the surface has the same 
temperature as the bottom surface with vanishingly small temperature gradient. On 
the other hand, a t  the corner A ,  where hot fluid impinges on the cold surface, a 
stagnation-point thermal boundary layer is formed on the top surface. Remembering 
that the surface velocity is of O(Rg/( -In s);), the thickness of this thermal boundary 
layer is estimated to be of O(R-8( -Ins):), which is smaller than the asymptotic 
horizontal thermal boundary-layer thickness by a factor of O(R-A( - In E)$). Putting 
z' = 1 - z ,  the temperature within the stagnation-point thermal boundary layer, 
which is governed by the equation 

is given by 

(3.11) 

(3.12) 
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Around the corner A’ the flow near the bottom surface is described by the following 
approximate form of the stream function (2.5) : 

where ( 3 . 1 4 ~ )  

(3.14b) 

With $ - O(Ri) we identify this with part of a closed streamline which surrounds the 
isothermal core region. Equation (3.13) suggests that the boundary streamline is 
switched from the first term on the right-hand side to  the second term at a distance 
r = rc which is given by 

[ y h \ t 1  

. . .  
For h of 0(1) this leads to 

(3.15) 

(3.16) 

The same relationship holds for the top surface. Hence, using (3.12) the heat flux 
across the surface r < rc is evaluated as follows: 

2 n [ g l  rdr=-- 4(2n){[3( 3 - 2 2( -1n~)  yh2RNu)li .( - .  -Ins Ri ) (3.17) 
z=o 

For large R this flux is asymptotically negligible in comparison with the net heat flux 
across the top surface. Furthermore, i t  is found from (3.13) that the thickness of the 
horizontal thermal boundary layer which emerges from the stagnation-point thermal 
boundary layer grows to a thickness comparable with the average thickness of O(R-i) 
a t  the distance r - rc.  

4. The perimeter plume 

by the descending plume, 
The basic balances describing the perimeter plume are given by the stress exerted 

(4.1) 
-(h,z) aw =RS~~(H--B, )dx ,  
ar 

and by the continuity of the heat flux 

W(h,  z )  2nh8 lom (8  - 8,) dx, = ( 1 - y )  nA2Nu, (4.2) 

where x* = ( A - r ) / S ,  and S = R-i denotes the thickness of the plume. By combining 
(4.1) and (4.2) we obtain as a boundary condition for w a t  r = A :  

aw 
ar w(h,z)-(h,z)  = +(l -Y)hRNu.  (4.31 
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Since the coefficients A ,  are smaller by the factor (-1ne)f than the coefficients B, 
according to (3.6) and (4.3), we can neglect the coefficients A ,  a t  r = h and rewrite 
(4.3) in the form 

(4.4) 1 
m 

C 8, Gb(h) sin (nnz) X B, Gk(h) sin (nnz) = 1,  1 
1 

where we have defined B,:= -B, 

and 
Io(nnh) I,(nnh) 1 ' Il(nnh) I,( nnh) 

G,(h):= 2+nnh 

(4.5) 

( 4 . 6 ~ )  

(4.6 b)  

Equation (4.4) provides the determining equation for the coefficients B,, which is 
solved numerically. Nevertheless, we can solve it analytically for special cases. Since 
the results are useful for later discussion we mention them here briefly. 

In  the limiting cases of h + co , 0 the quantities G, and Gk in (4.6) assume the form 

G i - + I ,  Gk+2nn as h+co, ( 4 . 7 ~ )  

G, -+ a(nnh)2, Gk --f (nn)2 h as h --f 0. (4.7 b )  

From (4.4) and (4.7a), B,  approaches a value independent of h as h tends to infinity. 
This property will be utilized to examine the asymptotic behaviour of Nu for large 
aspect ratios. On the other hand, for small A we obtain the expression 

- 41-(--1),  
It A: (nn13 

B =- 

which leads to a parabolic form of plume velocity, W(z) ,  and a uniform shearing rate, 
aW/ax,. Furthermore, the validity of (4.4) near z = 0 , l  requires n to be odd in general. 

As the perimeter plume approaches the bottom surface it widens. The width of the 
plume at the point where u and w are of the same magnitude is of O(R-g). This 
estimate is obtained from the property that, according to the solution of (4.4), W(h,  z )  
varies like z: as the boundary z = 0 is approached (see also Roberts 1979). Hence the 
scale 8, of the corner region is governed by the relationship R-iRg = S, h$ &, which 
expresses the approximate equality of fluid fluxes inside the plume above the corner 
and in the corner itself. The order of magnitude R-f of 8, indicates that heat 
conduction is not important in the corner and that the temperature distribution is 
changed only through advection inside the region. 

Conduction becomes dominant, of course, right at the boundary z = 0. A thin layer 
of thickness 6, must be considered separately. Using the balance between vertical 
advection and conduction in this layer we estimate from the balance 

that 6, must be of O(R-$. This estimate is likely to be a lower bound since the square- 
root dependence of w(A, z )  may not be valid down to the distance 6, from the bottom 
surface. However, the exact order of magnitude is not important for the following as 
long as 8, is small compared to R-f. Even if a linear dependence on z up to z = 8, is 
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FIGURE 3. Surface velocity integrals as functions of the aspect ratio, 

assumed the estimate for 8, is changed only to R-A, and in either case the heat flux 
across the surface in the corner is found to be negligible. 

5. Thermal structure in the boundary layers 
Each boundary layer is so thin that flow is unidirectional within it, that is, the 

longitudinal velocity a t  any cross-section is uniform and given by the boundary 
value of the core flow. Because of this flow property the analysis of thermal structure 
in the boundary layers can be reduced to  the so-called second kind of Stokes problem 
by use of the von Mises transformation, as described below. 

Using the stream function ,@ as the transverse coordinate, we can transform the 
boundary-layer type of heat equation (2.1 G )  into 

where for mathematical convenience the temperature B has been replaced by 

has been introduced. The downstream coordinate along the cell edge, 
the respective layers as follows. 

(2Q,+A252,)t = Qh+A2 w(h,z)dx 1 s :  

(5.2) 

t ,  is defined in 

in the top layer, 

in the perimeter plume, (5.3) 

I 52, + h2Q, + 1 r2u(r,  0) dr in the bottom layer. 

The quantities 52, and 52, appearing in (5.2) and (5.3) denote the surface velocity 
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integrals defined in (5 .4)  and (5.5) below, and shown in figure 3. In those integrals the 
contributions from the flow component with the coefficients An may be neglected. 
The limiting forms in (5 .4b)  and (5 .5b)  are due to (4.7b) and (4.8). 

= (i(1 - y )  hRNU)LJh(h), 

with 

and 

with 

4 I  

w,(h) = 4 c - 
nodd nx 

as A+O. 

The boundary conditions for (5.1) are 

0 ( 0  < t < A ,  x = 0) = -&-Be,  

where 

as h-+oo, 

a@ 
- (d < t < 1 - A ,  z = 0) = 0, 
ax 

O( 1 - A  < t < 1 ,  x = 0) = i - Be, 

O(t = 0,x) = @(t = l ,x ) ,  

@ ( t ,  x-+ co) -to, 

(5 .4a)  

(5 .4b)  

(5.5a) 

(5.5b)  

( 5 . 6 ~ )  

(5 .6b)  

( 5 . 6 ~ )  

(5 .6d)  

(5 .6e)  

(5.7) 

Since the temperature profiles at both ends of the central plume are identical, the 
solution is periodic in t with unit period. From the assumption of steadiness we 
obtain the condition 

1 a 8  
- ( t ,  x = 0) dt, (5 .8)  s,, ax 

yq = IOm @(t = 0, x) dz. 

q E [ E ( t , z  = 0 ) d t  = - 

which determines the unknown core temperature Bc as a function of A .  The central 
plume heat flux fraction y is calculated from 

(5.9) 
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(5.10) 

From (5.8), (5.9) and (5.10) the quantities OC, y and R-~Nu are determined as 
functions of A .  To obtain their dependences on A ,  (5.7) with (5.4b) and (5.5b) must 
be invoked, which yields A as a monotonically increasing function of A. According to 
the limiting value in (5.4b) and (5.5b), A2wP = 2w, holds in the limit A+m. 
Therefore, A lies in the range between 0 and a. 

For prescribed values of 8, and A ,  (5.1) can be solved numerically by starting with 
an arbitrary temperature profile a t  t = 0 and marching forward in t and applying the 
boundary conditions (5.6) in cyclic order. The determination of 0, by (5 .8) ,  however, 
may contain significant errors because convergence of the far field is inevitably slow 
even if the near field appears to  converge fast. In  fact, since for any value 8, that does 
not satisfy ( 5 4 ,  there will be a net heat flux towards infinity, slow convergence of 
the far field makes it difficult to determine an accurate value of 8,. To eliminate this 
difficulty we next consider the general property which the exact solution should 
satisfy. This will lead to an alternative formula which is also suitable for the 
calculation of the fraction of the heat flux carried by the central plume. 

As shown in Appendix B, the solution must satisfy the following relations: 

J;B( t , s  = 0)dt = 0, 

yq  = -[:s(t,s = 0)tdt. 

( 5 . 1 1 ~ )  

(5.1lb) 

(5 .11~)  

The first equation ( 5 . 1 1 ~ )  is nothing other than the steadiness condition (5.8). The 
second equation is expressed in terms of the original variables as follows: 

8V.dl= 8, V-dl, (5.12) 

indicating that the core temperature coincides with the average value of the surface 
temperature weighted by the surface velocity. This equation is of the same form as 
that which Batchelor (1956) derived for determining the value of core vorticity in 
high-Reynolds-number flow with closed streamlines. The third equation is more 
convenient than (5.9) in that the integration is changed to that over the boundary. 
Actual numerical calculations show that for a given A the variation of the residual 
of (5.8) with 8, is small after several iterations while the left-hand side of (5.11 b)  still 
varies strongly. Thus, (5.11 b)  can be used as a criterion to find the accurate 8,-value. 

Although A does not exceed a in the present analysis, (5.1) together with (5.6) has 
a continuous solution in the range 0 < A < $. For the extreme cases of A = O , $  it is 
not difficult to solve the equation analytically. The calculated numerical solution 
provides good agreement with the thus-obtained approximate analytical solution for 
the characteristic quantities q, B,, y and 8, as functions of A ,  where 8, = 8(t + A ,  
x = 0) denotes the surface temperature at the end of the perimeter plume and the 
difference 8, +; characterizes the effect of heat conduction within the perimeter 
plume. 

I I  
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FIGTJRE 4. Nusselt number dependence on the aspep ratio. The two broken lines indicate the 
asymptotes 0.448fh at large aspect ratio and 0.229hr at small aspect ratio. The thin line denotes 
the result by Olson (1987) for two-dimensional convection. The maximum point in Jones et aZ.’s 
(1976) numerical calculation is shown by the solid circle. 

6. Results and discussion 
Figure 4 shows the variation of R-fNu with A. The corresponding curve for the two- 

dimensional case has also been drawn for comparison. Although both curves are of 
similar form, there are some significant differences between them. In contrast to a 
finite value of R-fNu a t  h = 0 in the two-dimensional case, R-~Nu decreases to zero 
like hf in the three-dimensional case. As we shall see later, this property is caused by 
the fact that the central-plume heat flux fraction y tends to unity as A + 0. Another 
notable difference is observed in the behaviour at large aspect ratio. In the two- 
dimensional case the curve approaches a decay proportional to A-’ for A greater than 
2. In  the three-dimensional case a similar property holds for the limit h + 00, but the 
approach to the asymptote is much slower. This difference comes from the difference 
in the asymptotic form of the surface velocity integrals for the two cases. In  the two- 
dimensional case they approach constant values exponentially with increasing A, 
whereas in the three-dimensional case deviations from their limiting values are 
inversely proportional to A. Such a slow decay of R-iNu for large aspect ratios implies 
that even though the two-dimensional value of R-~Nu is greater than the three- 
dimensional value of R-~Nu around A = 1 the latter may exceed the former at large 
aspect ratios. In view of the upper limit for h given in Appendix A this possibility, 
however, does not seem to occur in reality. The solid circle in figure 4 indicates the 
maximum point of the numerical calculation by Jones et al. (1976) for R = 65600. 
This value is about 1.4 times greater than the present result, although their positions 
as a function of h agree. Further, according to Jones et al. the maximum value of Nu 
for the three-dimensional case was a little smaller than that of the two-dimensional 
case. This tendency is the same although the difference is larger. 
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FIGURE 5. Several properties as functions of the aspect ratio : plume heat flux fraction y ; stagnation 
temperature at perimeter plume end B1 ; and core temperature B,. In  the rising-central-plume case 
the two temperatures take negative values. They approach the limiting value 1 /42- ;  a t  
vanishing aspect ratio and the asymptotes -0.14 and -0.27 a t  large aspect ratio. The central heat 
flux fraction becomes unity a t  vanishing aspect ratio and decreases to 0.76 with increasing aspect 
ratio. 
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FIGURE 6. Isotherms in thermal boundary layers. An example of the solution to  the equation 
system (5 .  l ) ,  (5.6) and (5.8). Since the central plume is convection-dominant, the temperature 
profile a t  the end of the bottom layer is the same as that a t  the start of the top layer. 

Consistent with Jones et al.’s result the core temperature, Bc,  for the case of an 
ascending central plume becomes negative as shown in figure 5.  It increases from the 
limiting value 8- l / d 2  at h = 0 to a constant value as h tends to infinity. The reason 
why 8, becomes negative may be understandable from figure 6, where isotherms 
derived from the numerical solution are depicted for the extreme case of A = a. Since 
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FIGURE 7. Streamlines for A = 1 (left) and A = 3 (right). The numbers express the values of R-i$ 
with R = los. The streamlines without numbers are contoured evenly between zero and the 
minimum stream-function value. The central and perimeter plumes are a t  the left and right edges, 
respectively. 

the influence of the cell boundaries penetrates into the interior further downstream, 
the two 8,-isotherms originating from the two stagnation points located at the 
terminal ends of both plumes continue in the form of two intertwined spirals into the 
core region. These curves assume the form of a vertical straight line in the region of 
the central plume, since the temperature profile a t  the beginning is invariantly 
advected by the vertically uniform velocity in the central plume. The asymmetry 
between the two plumes is also responsible for the different thicknesses of the upper 
and lower horizontal boundary layers which are evident in figure 6 and for the 
negative value of 8,. The hot fluid tongue at the upper boundary starts with a high 
initial temperature but experiences a rapid decay towards the value 8, near its end 
because of the small thickness of the boundary layer. The cold tongue at the lower 
boundary, on the other hand, starts with the moderate value 81 which does not 
change much as the cold tongue approaches the centre. In  order that mean 
temperatures in the hot and cold horizontal tongues differ by an approximately equal 
absolute amount from the core temperature, the latter must assume a negative 
value. 

Figure 7 shows streamlines of the isothermal core flow for h = 1,3 and R = lo6. As 
in the two-dimensional case, two separate convection rolls driven by each plume 
appear when h exceeds a critical value. The reason for this phenomenon is that 
the distance over which each plume can drive the flow effectively is restricted to the 
order of the plume height. Accordingly, a t  the distance where the influence of the 
plumes dies away the decay of the horizontal surface velocity widens the local 
boundary-layer thickness until a breakdown of the present analysis occurs. To see 
the variation with A of the horizontal surface velocity distribution, several cases are 
shown in figure 8 for the same value of R as in figure 7. When h is below a critical 
value, around 1.5, the distribution has a single maximum value corresponding to a 
single convection roll. When h exceeds the critical value, a minimum emerges in the 
central part accompanied by the appearance of double rolls and the two maximum 
points move towards both ends. The position of the right maximum point 
corresponds to the location of the centre of the roll driven by the perimeter plume, 
which settles down at  the distance 1/7c away from the perimeter in the limit h + co. 
Since the buoyancy force acting in the perimeter plume becomes constant as h tends 
to infinity, the maximum value does not change significantly with A. The roll driven 
by the central plume experiences a similar fate. It can be noticed, however, that the 
left maximum value is an increasing function of h while the maximum on the 
perimeter side is a slightly decreasing function of A. This feature is caused by the fact 
that  the left maximum value approaches the asymptote (yh2RNu/2( -In E ) ) ; ,  where 
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FIGURE 8. Horizontal surface velocity profiles. The development of a broad velocity minimum 
range, or the growth of the horizontal thermal boundary-layer thickness, is observed in the mid- 
region of the cell as the aspect ratio increases beyond a certain value. 

Nu and y become constant as A --+ a. Since A must be much less than O( - In E )  for the 
validity of the present analysis (see Appendix A), this maximum value may not 
exceed the other one. 

Figure 9 shows the distributions of vorticity at the midheight z = t .  Characteristic 
of axisymmetric convection is a narrow, highly concentrated vorticity region around 
the central plume. This situation is easily recognized if we replace the central plume 
by a thin string drawn with a constant force in a viscous fluid. Since the surface area 
per unit length, upon which the frictional force acts, decreases with decreasing 
radius, the surface shearing rate increases inversely proportionally to the radius in 
order to provide a constant driving force. For the case of A = 1 the vorticity is almost 
uniform except near the centre plume, implying that fluid rotates like a rigid body. 

It is interesting to examine the variation with A of the temperature 8, a t  the 
bottom of the perimeter plume. Figure 5 shows that increases monotonically with 
A. This implies that the effect of conduction becomes small as the aspect ratio 
increases. The behaviour of 8, in the extreme case A+O,  co can be physically 
interpreted as follows. First we consider the reason why 8, coincides with 8, in the 
limit A -to. Since the degree of decay of the hot fluid tongue temperature depends on 
the distance of travel through the fluid, the horizontal temperature profile a t  the 
beginning of the perimeter plume seems to become oscillatory for small A. In  fact, the 
top layer has the maximum temperature t a t  a distance of O ( A k i )  from the surface, 
and this temperature profile is advected around the corner into the perimeter plume. 
Since the plume height is unity, an initial disturbance disperses over a distance of the 
order of the plume thickness while travelling with the plume. As a result the initial 
rapid temperature variation within a narrow region with a thickness of the order 
AiR-5 is smeared out by conduction a t  a downstream distance of O(h&R-S). At the 
same time this process implies that  the tail of the hot fluid tongue actually decays 
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FIGURE 9. Vorticity distributions at the half-height. 

rapidly to the core temperature. Thus, the temperature in the perimeter plume 
coincides with the core temperature except for a short initial interval and the net 
heat flux through the plume becomes equal to zero, i.e. y = 1, in the limit A + O .  In 
the large-aspect-ratio limit the penetration distance of influence from the top surface 
increases as well as the thickness of each thermal boundary layer, while the 
magnitude of the surface velocity does not change significantly as we have seen 
before. Hence, the growth of the boundary-layer thicknesses weakens the effect of 
conduction and raises the value of el. Both the greater deviation from 8, and the 
growth of the thickness favour the increase in the net heat flux through the perimeter 
plume. Nevertheless, figure 5 indicates that y is still above t for the limit A + co. 

That most of the heat transport occurs through the central plume even in the limit 
of A+ co is the most surprising aspect of the mathematical analysis. But it must be 
taken into account that, according to the criterion derived in Appendix A, A may not 
exceed the magnitude of In In (s-l) which imposes a very severe constraint indeed. 
The basic reason for the importance of the central plume is that the mass flux 

I6 FLll  308 
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participating in the perimeter plume also participates in the central plume. While the 
horizontal boundary-layer thickness decreases for reasons of continuity before 
reaching the perimeter plume, it increases rapidly for the same reason before merging 
with the central plume. The geometric disadvantage of the latter is thus compensated 
by the dynamic advantage of the rising horizontal boundary layer. 

This study was carried out during the first author's visit to Germany as an 
Alexander von Humboldt Foundation research fellow. The authors thank the 
Foundation deeply. 

Appendix A 
Although in the present analysis the aspect ratio is assumed to be of U ( l ) ,  the 

results are valid over the range described below. The upper and lower bounds on h 
are derived by examining the asymptotic behaviour of (3.15) as A+ 0 and 00. For the 
limiting case of h+O, (3.14) takes the form 

which can be substituted into (3.15) to yield 

Since 1-7 = kh for small A (see figure 5 ) ,  the last inequality gives the lower bound 
on A, i.e. 

(A 3) 
h % U(-). 1 

-Ins 

For large h (3.14) can be approximated by 

Substituting these into (3.15) we obtain 

This must be much smaller than unity, so that 

The results presented in $6 are all based on the assumption that the contributions 
of the axial flow component to the surface velocity integrals, a,, and Qp, are negligible 
in comparison with those of the perimeter flow component. This assumption imposes 
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the same upper bound as (A 3) since the vertical surface velocity integral for the axial 
and perimetric flow components respectively take values of O( (yA2RNu/( -In 6)) ; )  

and 0( ( (1 -y )h2RNu) i )  as A tends to zero. On the other hand, for large A the 
contribution of the axial flow component to the horizontal surface integral becomes 
O((yh2RNu/( -In e));), while the contribution from the perimeter flow component is 
proportional to the factor (( 1 - y )  hRNu); and must be of O(R4). Hence, we obtain the 
condition h 4 -In 8 ,  which is automatically satisfied when (A 6) holds. 

Appendix B 
Operation of the Laplace transform in x transforms (5 .1)  into 

d 0  - a@ 
dt i3X 

- s2@-- (t, x = 0) --s@(t, x = 0). - _  

This is integrated to yield 

From the cyclic condition (5.6d) one obtains 

- s: @(t = O,x)e-SZdx = &t = 0) = @(t = 1) = @(t = l,x)e-SZdx. (B 3) 

The constant of integration, C, is thus determined by 

1: (t, x = 0) e-szt dt + s @(t, x = 0) ePszt dt 
C =  1 - e-8’ 

Since the net heat flux through the central plume must be finite, the equation 

yq = [:@(t = 0,x)dx = o(t = 0;s = 0) = limC 
s+o 

ao 1 ao 
f,(t,x=O)dt+a ( @(t,x=O)dt-s2 r x ( t , x =  : 0) t dt + O(s4) 

(B 5) 
J O  U% J o  J o  ”* 

s 2 +  0 ( ~ 4 )  
= lim 

s-to 

leads to the three relations (5.11). 

the general solution to  (5 .1)  subject to the conditions (5.6d, 3):  
The validity of these relations is confirmed by the separation-of-variable form of 

00 

@ = X e -  (nn”)’[~~cos ((nnx)i-~nnt) - Q,  sin ((n.rcx)f-2nnt)l. (B 6) 
n-1 
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